SINGLE POST

Comparison of Advanced Control Techniques for Grid Side Converter of Doubly-Fed Induction Generator Back-to-Back Converters to Improve Power Quality Performance During Unbalanced Voltage Dips

A doubly-fed induction generator grid side converter is studied under voltage disturbances. During voltage dips, conventional current control techniques involving the decoupling of d-q axis in the synchronous reference frame (SRF) exhibits oscillations in the stiff dc link voltage, as well as in the active and reactive power outputs of the voltage source converter (VSC). To mitigate the oscillations, an advanced control technique called the sequence domain control (SDC) is evaluated. This approach implements individual controllers in the positive and negative sequence domains and demonstrates stabilization of the dc link voltage to a greater extent during a disturbance, but is more sluggish than the conventional control.

An innovative control technique called direct power control (DPC) is also investigated. This control achieves active and reactive power stability with simple active and reactive power control variables replacing the traditional current control loops. The DPC technique is verified using a prototype in the laboratory. A modified DPC algorithm combining the benefits of DPC and SDC to eliminate the current harmonics created by DPC during system disturbances is introduced. The benefits of the proposed controllers are compared using a simulation of voltage dip on a VSC based on the IEC-61400-21 standard.