Computer Vision Based Autonomous Robotic System for 3D Plant Growth Measurement

Research on increasing the production of crops is increasingly important these days. This research needs a way to quantitatively measure the 3D growth of plants under controlled environments to allow a cost versus benefits analysis. Plant scientists need a non-invasive, non-destructive method to quantitatively measure the 3D growth of plants. Traditional methods, for example, measuring weight, area or volume, often negatively affects the future plant growth. Also the manual nature of this measurement can be quite time consuming, tedious and error prone. Some recent effort have been reported in the literature about the construction of autonomous systems for plant phenotype, but these are not practical for large scale accurate 3D plant growth computation.

To the best of our knowledge, we are the first in the world to attempt truly 3D approach via robot assisted plant growth analysis using 3D imaging and laser scanning technology. We describe an automated system to perform 3D plant modelling using a laser scanner mounted on a robot arm to capture 3D plant data. We present a detailed overview of the system integration, including the robotic arm, laser scanner and a programmable growth chamber. We also show some results on reconstructing the 3Dmodel of a growing plant which is better than the current state of the art.