Generation-side power scheduling in a grid-connected DC microgrid

In this paper, a constrained mixed-integer programming model for scheduling the active power supplied by the generation units in storage-based DC microgrids is presented. The optimization problem minimizes operating costs taking into account a two-stage mode operation of the energy storage system so that a more accurate model for optimization of the microgrid operation can be obtained. The model is used in a particular grid-connected DC microgrid that includes two renewable energy sources and an energy storage system which supply a critical load.

The results of the scheduling process are including in simulation by establishing a MATLAB/Simulink model of the microgrid and setting several initial conditions of the state of charge of the energy storage system. As a result, we obtain reductions in costs and at the same time guarantee safe levels of state of charge to increase the life-time of the energy storage system.