Switched-Mode Load Impedance Synthesis to Parametrically Tune Electromagnetic Vibration Energy Harvesters

Energy harvesters based upon resonant mass-spring-damper systems can only generate useful powerover a narrow range of excitation frequencies. This is a significant limitation in applications where the vibration source frequency changes over time. In this paper, an active electrical load is presented which can overcome the bandwidth limitations by parametrically tuning the overall harvester system.

The electrical tuning technique synthesizes an optimum reactive load with high-efficiency switch-modeelectronics, which also provides rectification, feeding the energy harvested into a dc store. The method is shown to be effective at increasing the power frequency bandwidth of resonant type harvesters and offers the capability of autonomous operation. The theoretical basis for the technique is presented and verified with experiment results. The paper illustrates the challenges of implementing the powerelectronic converter for a low-quiescent power overhead and in choosing the control architecture and tuning algorithms.